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Oblique wind waves generated by the instability 
of wind blowing over water 

By L. C .  M O R L A N D  
Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA 

(Received 26 January 1994 and in revised form 26 June 1995) 

The growth rates of gravity waves are computed from linear, inviscid stability theory 
for wind velocity profiles that are representative of the mean flow in a turbulent 
boundary layer. The energy transfer to the waves is largely concentrated in an 
angle (to the wind) interval that broadens with increasing wind speed and narrows 
with increasing wavelength. At sufficiently high wind speeds and sufficiently short 
wavelengths, the waves of maximum growth rate propagate at an oblique angle to 
the wind. The connection with bimodal directional distributions of observed spectra 
is discussed. 

1. Introduction 
In a paper concerning the instability of wind blowing over water, Morland & 

Saffman (1993) described a Squire’s transformation that relates the linear growth rate 
of an oblique gravity wave to that of a wave propagating in the direction of the wind. 
They noted that for logarithmic wind profiles, representative of the mean flow in a 
turbulent boundary layer, Squires’s theorem does not hold, i.e. the wave of maximum 
growth rate does not necessarily propagate in the wind direction. In this paper, the 
growth rates of oblique waves are examined in detail, and their influence on the 
directional distributions of gravity wave spectra is discussed. 

The inviscid instability studied here is caused by the critical-layer mechanism for 
the transfer of energy from the wind to the waves, discovered by Miles (1957). For a 
given logarithmic profile, it acts on waves whose critical layers lie above the viscous 
sublayer. As can be seen in figure 4 of Morland & Saffman, the growth rate decreases 
rapidly to zero with decreasing wavelength, once the critical layer has descended 
into the viscous sublayer. Although stable, or nearly stable, according to inviscid 
theory, waves whose critical layers lie in the viscous sublayer are subject to a viscous 
instability (Benjamin 1959; Miles 1962), and for these waves the inviscid instability 
appears to be unimportant physically. Hence, attention is focused on waves whose 
critical layers lie above the viscous sublayer, i.e. waves for which c 9 u*, where c is 
the phase speed of the wave and u* is the friction velocity of the mean flow. 

The approach to studying the instability adopted here, numerical solution of 
Rayleigh’s equation, can be extended to include viscosity by replacing the Rayleigh 
equation by the Orr-Sommerfeld equation, as was done by Valenzuela (1976) in the 
case of waves aligned with the wind. However, the Orr-Sommerfeld equation requires 
an additional asymptotic boundary condition at large heights above the water surface, 
which in the case of logarithmic profiles, cannot be found in closed form, and hence 
is an additional source of uncertainty in the calculation. 
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In the critical-layer theory, the presence of turbulence is taken into account in 
the choice of basic state, but the perturbed Reynolds stresses are neglected in the 
linearized equations. In order to include these terms, a turbulence model is required. 
Van Duin & Janssen (1992), building on the work of Jacobs (1987) (see also Knight 
1977), use a family of first-order closure models to develop an asymptotic theory of 
wave generation in the limit of small ratio of friction velocity to wind speed. They 
derive a formula for the growth rate, which depends on the choice of turbulence 
model. In their analysis, the contribution to the growth rate from the critical-layer 
mechanism is negligible compared to the contribution from the perturbed Reynolds 
stresses. However, Miles (1993) finds that the two contributions are similar in 
magnitude. Belcher & Hunt ( 1  993) use a truncated mixing-length turbulence model. 
They find that the dominant contribution to the growth rate is due to a non- 
separated sheltering mechanism and so, as in van Duin & Janssen’s analysis, the 
critical-layer mechanism does not contribute at leading order. However, their growth 
rates are, asymptotically, an order of magnitude smaller than those of van Duin & 
Janssen. Hence at present, the relative importance of the critical-layer mechanism is 
an unresolved issue. 

The results presented here, for wind speeds and wavelengths typical of those in 
field observations, show that at fixed wavelength and wind speed, positive growth 
rates, and hence energy input from the wind, occur in an azimuthal angle interval 
centred on the wind direction. In fact, the growth rate is positive for all angles in 
(-7c/2, 7c/2), but as will be seen in 94, there is a well-defined interval of positive growth 
rate, outside which growth rates are negligible. The width of the interval decreases 
with increasing wavelength and increases with increasing wind speed. The interval of 
positive growth rate is in good agreement with the corresponding intervals given by 
the formula of Snyder et al. (1981) that summarizes field data and by van Duin & 
Janssens’ formula for oblique waves. Although there is good agreement in the interval 
of positive growth rate, there is in general a discrepancy between the growth rates 
from the three sources; especially between the theoretical and observational growth 
rates. Van Duin & Janssen note that their formula underestimates the observed 
growth rates, and the same is true of the growth rates presented here, which are of 
the same order of magnitude as those computed by van Duin & Janssen. In contrast 
with the inviscid instability, van Duin & Janssen predict negative growth rates, i.e. 
damping, outside the interval of positive growth rate. 

The summary of field observations, van Duin & Janssens’ formula, and the nu- 
merical boundary-layer model of Burgers & Makin (1993) give only single-peaked 
growth rates, while the inviscid critical-layer mechanism and Phillips’ resonant wave 
generation mechanism (Phillips 1957) can produce double-peaked growth rates. The 
relationship between the energy transfer from the wind to waves and an observed 
wave spectrum is indirect, because of energy dissipation by wave breaking, wave- 
wave interactions, and wave scattering by subsurface currents. The relationship is 
complicated further by the flow separation that accompanies wave breaking (Banner 
& Melville 1976). These mechanisms, with the exception of wave scattering, which 
has not been studied extensively, are discussed by Phillips (1977). 

Wave scattering by subsurface currents and its influence on gravity wave spectra was 
first examined in detail by Zakharov & Shrira (1990). Their work was motivated, in 
part, by the need to explain why the directional distributions of the spectra of gravity 
waves observed at sea (Mitsuyasu et al. 1975; Donelan, Hamilton & Hui 1985) were 
narrower than expected, given the broadening influence of wave-wave interactions. 
They concluded that wave scattering acts to narrow the angular spectrum, but to 
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such an extent that, when it is taken into consideration, the spectra at sea appear to 
be too broad. 

Bimodal directional distributions have been observed in the field. (At a given 
frequency f ,  the directional distribution is h(8) = F ( f , 8 ) ,  or a normalization of h, 
where 8 is the angle to the wind and F is the directional spectrum.) Phillips (1958) 
examined the connection between bimodal directional distributions from the SWOP 
data (Cot(: et al. 1960) and his resonant wave generation theory. More recently, the 
ROWS spectrum obtained by Jackson, Walton & Peng (1985) was found to be very 
similar to the SWOP spectrum, including the occurrence of bimodal structures, and 
it was concluded that the results supported the action of the resonance mechanism 
(see also Phillips 1988.) 

The SWOP and ROWS spectra were obtained under conditions of large fetch. 
Under fetch-limited conditions, bimodal directional distributions were observed to 
occur occasionally by Donelan et al. and are a general feature of the spectra of 
Young, Verhagen & Banner (1995). Young et al. found that bimodal directional 
distributions occur when the frequency is greater than a value that is approximately 
twice the peak frequency and note that the data of Donelan et al. extend only to 1.6 
times the peak frequency. 

Two energy transfer mechanisms, the critical-layer mechanism and Phillips’ res- 
onance mechanism, would in isolation lead to bimodal directional distributions. 
However, the dissipation mechanisms may also be responsible for bimodal directional 
distributions. Zakharov & Shrira find that wave scattering generally gives rise to bi- 
modal directional spectra, and it has been suggested (Jackson et d.) that wave-wave 
interactions may also be responsible for producing bimodal directional distributions. 
Young et al. compare the results of a numerical model with their experimental data, 
and the comparison indicates that the bimodal distributions are maintained by energy 
transfer through wave-wave interactions. 

In 92 the linear theory is developed, in $3 the occurrence of double-peaked growth 
rates is interpreted in terms of Squire’s transformation, and in 94 the results are 
presented. At a fixed wind speed, the growth rate is found to be a double-peaked 
function of angle to the wind for sufficiently short waves. The cases presented in 
detail satisfy the condition described above, c 9 u*, but in addition, they satisfy the 
more stringent condition that the growth rates are insensitive to the form of the wind 
near to the water surface. This condition has been verified by using four families of 
basic states, each of which tends with increasing height to the logarithmic profile of 
the mean flow of a turbulent boundary layer, but which differ in treatment of the 
viscous sublayer. When this second condition is imposed, it is only at the higher wind 
speeds that double-peaked growth rates are unambiguously predicted. The results are 
summarized in 95. 

2. Linear theory 
A right-handed Cartesian coordinate system is defined in which the origin is 

at the mean level of the water surface, the x-axis points in the direction of the 
wind, and the y-axis points vertically upwards. In the basic state a planar interface 
separates quiescent water from air in plane, parallel motion, with velocity given by 
u = (V(y),O,O). The governing equations in both fluids are the Euler equations and 
the equation of mass conservation. At the interface the boundary conditions are 
continuity of pressure and the kinematic condition, and at large distances from the 
interface the velocity is required to tend to that of the basic state. 
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Following the standard procedure, the linearized equations for perturbations to 
the basic state, proportional to exp[i(ax + p z  - wt)], are derived. The equations 
are simplified by applying a Squire’s transformation to produce an associated two- 
dimensional problem with wavenumber 8 = (a2 + p2)lI2, velocity eigenfunctions 
ii = (au + p u ) / d  and v” = u, angular frequency 0 = dw/a,  and gravity g = ( d / a ) 2 g .  
The transformation yields an eigenvalue problem for the wave speed of the associated 
two-dimensional perturbation, c = & / d  = w/a .  The absence of vorticity in the basic 
state of the water allows the eigenfunctions to be found analytically in y < 0, leaving 
the eigenfunctions to be determined in y > 0, 

(2.la) 

S(U - c)~c, - [SU’(U - c) + ( s  - 1)g + dc2]6 = 0, at y = 0, (2.1b) 

D,/U -+ -5 as y --+ GO, (2.14 

where s is the density ratio of air to water, taken to be in the calculations. The 
azimuthal angle is related to the wave vector by a = d cos 8, p = d sin 8, and the 
solutions are even functions of 8. 

The wind velocity profiles in the basic state are adaptations of the mean flow in a 
turbulent boundary layer, U(y) = (u*/rc)[log(u*y/v) + A ] ,  that are defined at y = 0. 
Two are ‘lin-log’ profiles incorporating a viscous sublayer in which the velocity varies 
linearly, 

Y Y1 (2.2a) 
- yl)/v) + A  - log(2~)], y 2 yl, 

(2.2b) 

where v is the kinematic viscosity of air (taken to be 1.5 x m2 s-l), u* is the friction 
velocity, IC is von Karmhn’s constant (taken to be 0.41), A is the roughness constant 
(taken to be 2.3), yl is the transition height between the linear and logarithmic sections 
of the profile, and y is defined by sinh(y) = 2 u 4 y  - yl)/v. The transition height is 
determined by the requirement that U and its first two derivatives are continuous at 
y = yl. Two profiles without a linear section have also been examined: 

U(Y) = (u*/IC)[10g(u*y/v + l/Jd + 4, (2.3a) 

U(y) = (u*/Ic)[log(u*y/v + exp(-A)) + A ] .  (2.3b) 

The first has the appropriate slope at y = 0, but has non-zero velocity, whilst the 
second has zero velocity, but incorrect slope. The results presented in 94 are insensitive 
to the choice of profile, i.e. they do not depend on the details of the basic state near 
the water surface. 

When lengths are scaled by l / d  and velocities are scaled by &(ti) = [(I - s)g/(l + 
~)d]’ /~ ,  the value of c in the absence of a wind, solutions to the associated two- 
dimensional problem depend on the two non-dimensional parameters Zo(d)/u, and 
dv/u,. In particular, 
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and hence by Squire’s transformation 

where co(E) = [(l - s)g/(l + s)E]’/~ is the phase speed of a wave of wavenumber E 
under the influence of physical gravity. However, it is more illuminating to present the 
results in terms of wavelength, azimuthal angle, and friction velocity, or equivalently, 
mean wind speed at ten metres, U~O. 

3. The occurrence of double-peaked growth rates 
The occurrence of growth rates that are double-peaked functions of azimuthal angle 

when the wavelength is fixed is possible because of the re-scaling of gravity in Squire’s 
transformation. To demonstrate this, a re-scaled friction velocity and wavenumber 
are defined by 9, = u* cos2l3 8 and 8 = E cos2l3 8. When these substitutions are made, 
the expression for the growth rate (2.4) becomes 

i.e. 0 = 8 /  cos1l3 8, where 8 is the growth rate of a wave of wavenumber 8, travelling 
in the direction of a wind of friction velocity 9,. As 8 increases from zero with E fixed, 
the growth rate, 0 3 D ,  is subject to two influences: the factor cos-’l3 8 acts to increase 
03D, while 8 can act to increase or decrease 030. The dependence of 8 on wavelength 
and friction velocity has been obtained from the series of plots of growth rate against 
wavelength shown in figure 4 of Morland & Saffman, or more precisely, the portions 
of those plots for which the critical-layer is above the viscous sublayer. At fixed 
friction velocity the dimensional growth rate decreases with decreasing wavenumber. 
However, when the wavenumber is fixed and the friction velocity is decreasing, the 
growth rate is decreasing for long waves and increasing for short waves. Here, both 
9* and 8 are decreasing as 8 increases, and hence double-peaked growth rates are 
most likely to occur for shorter waves, when both the decreasing friction velocity and 
the factor of C O S - ~ ’ ~  8 act against the decreasing wavenumber. 

4. Results 
Figure l(a) shows plots of scaled growth rate against azimuthal angle for wave- 

lengths A = 1, 3, and 5 m when u* = 0.1 m s-l and Ulo = 3.3 m s-l. At each 
wavelength the growth rates are scaled by the growth rate at zero azimuthal angle, 
00, which takes the values 4 . 9 ~ 1 0 - ~ ,  3 . 7 ~ 1 0 - ~ ,  and 5 . 6 ~ 1 0 ~ ~  s-l at 1, 3, and 5 m. 
The ratio of the phase speed to the friction velocity, c/u*, takes the values 12.5, 21.6, 
and 27.9, respectively, and the scaled wavenumber, vE/u*, takes the values 9.4 x 
3.1 x lop4, and 1.9 x The phase speed has been computed from 

At each wavelength, it can be seen that there is an angle interval in which most 
of the energy transfer from the wind occurs, the width of which decreases as the 
wavelength increases. Outside this interval, growth rates are positive, but they are 
negligible in comparison with a typical growth rate in the interval. The peaks are 
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FIGURE 1. Growth rate, scaled by growth rate in the wind direction, against azimuthal angle at fixed 
wavelength. (a) Ulo = 3.3 m s-' (u, = 0.1 m s-I), 1 = 1, 3, and 5 m. (b)  Ulo = 10.6 m s-' (u* = 0.3 
m s-'), 1 = 10, 30, and 50 m. (c) Ulo = 18.3 m spl (u, = 0.5 m s-l), 1 = 20, 50, and 100 m. 

coincident with the wind direction. The growth rates shown in figure l(a), and in the 
other figures, are independent of the choice of profile; disagreement between profiles 
occurs, at shorter wavelengths than those shown, when the critical layer is low enough 
that the profiles differ significantly. 

As was noted in the introduction, the angular interval of substantial growth rate 
predicted by the instability is in good agreement with the intervals of positive growth 
rate given by the summary of field data and by van Duin & Janssens' formula. In the 
latter two cases, the sign of the growth rate is determined by a factor in the formula 
in the form (I/ cos 8 - c)/c, where I/ is a measure of the wind speed (the speed at 
a height of 5 m in the case of the field data and at a height of l / Z ,  where Fi is the 
wavenumber, in the case of van Duin & Janssens' formula). Hence, the width of the 
interval is determined by V / c ,  or equivalently c/u*,  and has little or no dependence 
on vFi/u*. 

When viscous attenuation is included by adding the damping term -2vFi2 to the 
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growth rate (Lamb 1945), the growth rates at the lowest wind speed considered here, 
Ulo = 3.3 m s-l, are small enough that they are significantly reduced. 

Results for u* = 0.3 m s-l and Ulo = 10.6 m s-l are shown in figure l(b), for 
wavelengths of 10, 30, and 50 m, with corresponding values of GO of 1.0 x 
2.8 x scl (c/u, = 13.2, 22.8, 29.4; vE/u, = 3.1 x low5, 1.0 x lop5, 
6.3 x lou6). Figure l(c) shows results for u* = 0.5 m s-l and Ul0 = 18.3 m s-l, 
for wavelengths of 20, 50, and 100 m, with corresponding values of 00 of 4 . 4 ~ 1 0 - ~ ,  
2.3 x lop5, and 1.3 x lop5 s-l (c/u* = 11.2, 17.6,25.0; v8/u* = 9.4 x lop6, 3.8 x lo@, 1.9 x 

At Ulo = 10.6 m s-l the growth rate peak is still coincident with the wind 
direction, but at Ulo = 18.3 m s-l the growth rate is double-peaked at the shorter 
wavelengths. 

Double-peaked growth rates are obtained at the wind speeds of figures l(a) and 
l(b) if the wavelength is sufficiently short and the profile is of lin-log type. In the case 
of figure l(a), double-peaked growth rates appear at il FZ 0.4 m, and in the case of 
figure l(b), at 1 FZ 5 m. The growth rate is also double-peaked for the lin-log profiles 
in the case of the bimodal directional distribution shown by Donelan et al. in figure 
28(d) ( Ulo = 13 m s-l and 1 FZ 6 m). The peaks in the growth rate are located further 
from the wind direction than the peaks in the spectrum, but the significance of this 
result is questionable, since growth rates are sensitive to profile choice at this wind 
speed and wavelength. 

Phillips (1958) presents some bimodal directional distributions in his figure 1 for a 
friction velocity, assuming a logarithmic velocity profile, of approximately 0.3 m s-l. 
The directional distribution is bimodal for wavelengths of approximately 64 m and 
less; the smallest wavelength shown is 44 m. The data presented here in figure l(b) 
indicate that these bimodal distributions cannot be attributed to the instability being 
studied here, and Phillips presents evidence that his resonance mechanism (Phillips 
1957) is responsible. For a wave of wavenumber 8, the resonant wave generation 
mechanism predicts peaks at f6 if c/U < 1, where U is the wind speed at height 
1/8, c is the phase speed of the wave, 6 is the angle to the wind of the direction of 
propagation, and Ucos(8) = c. If c/U 2 1, the peak is in the direction of the wind. 
Jackson et al. present directional distributions for wavelengths ranging from 74 m to 
220 m, at a wind speed of about 11 m s-'. Those with wavelengths between 86 m and 
129 m are bimodal and the locations of the peaks in the directional distributions are 
in agreement with Phillips' resonance mechanism. Once again, figure l(b) indicates 
that the bimodal distributions are not connected with the instability. 

The spectra of Donelan et al. and Jackson et al. differ greatly in the peak angular 
frequency of the spectrum, which is up = 2.31 s-l in the former case and up = 0.75 
s-' in the latter. There is also a difference in the part of the spectrum in which 
the bimodal directional distributions appear. The bimodal distribution observed by 
Donelan et al. is at w / u p  = 1.4, while Jackson et al. observe bimodal distributions 
for co/cop between 0.92 and 1.13. 

The figures discussed above indicate that the width of the unstable interval increases 
with increasing wind speed, and this is confirmed in figure 2, which shows plots of 
dimensional growth rate against azimuthal angle for a 30 m wave when Ulo = 10.6, 
14.4, and 22.2 m s-l (c/u* = 22.8, 17.1, 11.4, v8/u* = 1.0 x 10-5,7.9 x lod6, 5.2 x 
Below the lowest wind speed shown, growth rates decrease rapidly with wind speed, 
as the critical layer rises into a region of very low profile curvature, and above the 
highest wind speed shown growth rates start to depend on profile choice, as the 
critical layer descends towards the viscous sublayer. At a fixed wind speed, when 
the growth rate is double-peaked, the peaks move apart with decreasing wavelength, 

and 7.6 x 
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FIGURE 2. Growth rate against azimuthal angle for a wave of length 30 m when Ulo = 10.6, 14.4, 

and 22.2 m s-l (u* = 0.3, 0.4, and 0.6 m s-l). 

as also occurs in the case of Phillips’ resonance mechanism. However, for a given 
wind, the resonance mechanism predicts peaks that are further apart than those of 
the instability, since they are located at the ends of the angle interval over which the 
instability is effective. 

Figure 3 shows the dividing lines between double-peaked and single-peaked growth 
rates in the (c/u*,  vE/u*)-plane computed from a lin-log profile ( 2 . 2 ~ )  and a logarithmic 
profile (2.3~). Single-peaked growth rates occur above the dividing lines and double- 
peaked below. The region in which the inviscid instability is important is given 
approximately by c/u+ > 8, and the two profiles give consistent, and hence most 
convincing, results when c/u* > 12. 

Young et al. show directional distributions at six wind speeds. In all cases except 
one, the bimodal distributions occur at parameter values for which either the neglect 
of viscosity in the stability analysis is not justified (c/u* < 8) or the two profile types 
give inconsistent results. In the exceptional case, c/u* NN 10 and vE/u* NN 4 x low4, the 
inviscid instability exhibits a single-peaked growth rate. Hence, it is not clear whether 
the inviscid instability contributes to the bimodal distributions or not. 

The growth rates computed from van Duin & Janssens’ formula are of the same 
order of magnitude as those of the critical-layer mechanism for the parameter values 
discussed above. At a constant friction velocity, van Duin & Janssens’ growth 
rates decrease more rapidly with increasing wavelength ; comparing with the data of 
figure 1, they are smaller at the three wavelengths and are negative for the largest 
wavelength, 1 = 5 m. At a fixed wavelength, van Duin & Janssens’ growth rates 
increase monotonically with increasing friction velocity, while as can be seen in figure 
2, those associated with the critical layer do not. In the cases of double-peaked 
growth rates shown above, van Duin & Janssens’s maximum growth rates over angle 
to the wind are larger by a factor of approximately two. 



Oblique wind waves 171 

0 5 10 15 20 25 30 

CIU,  

FIGURE 3. The dividing line in the (c/u,, vh/u,)-plane between single-peaked and double-peaked 
growth rates when the wind is of lin-log type (solid line) and of logarithmic type (dashed line). 
Single-peaked growth rates (S) occur above the dividing lines and double-peaked (D) occur 
below. 

5. Summary and concluding remarks 
For a wind of ‘lin-log’ type, the energy transfer to the waves due to the inviscid 

critical-layer mechanism is largely concentrated in an angle (to the wind) interval 
[-8,8] that broadens with increasing wind speed and narrows with increasing wave- 
length. An empirical formula for 8 is cos 8 = c /V,  where c is the wave speed and V 
is the wind speed at the reciprocal of the wavenumber. 

Observations in the field provide evidence that bimodal directional distributions 
occur at sea. Several mechanisms appear, in isolation, to be capable of giving rise to 
bimodal directional distributions : the resonant wave generation mechanism, wave- 
wave interactions, wave scattering, and as demonstrated here, the inviscid critical-layer 
mechanism. The relative importance of these mechanisms and how they interact in 
the formation of the spectrum are open questions, but it seems reasonable to look 
for the influence of energy input from the wind at frequencies away from the peak 
frequency, where the nonlinear mechanisms will have least influence. 

For a given wind, the inviscid critical-layer mechanism predicts double-peaked 
growth rates as a function of angle to the wind at the shortest wavelengths at which 
it acts. This prediction is most convincing at the higher wind speeds that occur 
at sea, for which the double-peaked growth rates are insensitive to the form of the 
wind profile near the water surface. Both the resonant wave generation mechanism 
and wave-wave interactions have been connected with observed bimodal directional 
distributions, but at present there is only a very tentative connection between the 
inviscid critical-layer mechanism and an observed bimodal directional distribution. 
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